STUDYING QUASAR-GALAXY CO-EVOLUTION AT HIGH REDSHIFTS WITH MSE

Manda Banerji (Cambridge → University of Southampton)

MSE AGN SCIENCE THEMES

Single Epoch

BH seeds

AGN triggering and mergers

Host galaxies

Obscured AGN

The earliest SMBHs

AGN feedback

Clustering

Demographics

Lensed quasars

Reionisation

Intervening absorbers

Time Domain

Reverberation mapping

Nuclear outflows

AGN variability

Close SMBH binaries

Dusty starbursts formed via major mergers

FUELLING AND FEEDBACK THE "STANDARD" PARADIGM

MERGER:

Multiple components; interaction

Star formation / black hole accretion fuelled by common gas supply. Quasar initially dust obscured – "blowout" phase.

STARBURST:

Intense star formation; dust obscuration

Feedback from black hole shuts off star formation

QUASAR:

Accretion onto supermassive black hole

ELLIPTICAL: Old stars; Most massive galaxies today

e.g. Sanders+86,88, Hopkins+05

THE LEGACY OF SDSS

Rankine et al. 2020

SDSS DR16QSO contains 750k quasar spectra (Lyke et al. 2020) opening up a wealth of new observational studies of quasars as a function of fundamental properties such as redshift, luminosity and black-hole mass.

SPECTRUM = NOT JUST A REDSHIFT!

MSE Advantages:

- Sensitivity
- NIR Coverage
- **Dedicated Survey**

STATISTICAL STUDIES OF QUASAR SPECTRA

Rankine et al. 2020 & In Prep

Broad and narrow absorption features in spectra probing gas around the central BH. Do these absorption features arise due to viewing angle or do they represent a particular phase in the quasar fuelling cycle? Are the outflow velocities seen capable of impacting the host galaxies?

OUTFLOWS & ACCRETION PHYSICS

- The strength of emission line blueshifts (outflows) depends very systematically on the hardness of the ionising SED – disc winds can only form when ionising SED is soft
- Quasars with broad absorption features show very similar trends in emission line properties with the ionising radiation flux – same parent population
- Structure and properties of the absorbing gas can potentially be constrained with MSE by looking at their variability signatures

THE INFRARED PHOTOMETRIC SURVEY REVOLUTION

- Leap in infra-red detector technologies have brought about a revolution in infra-red imaging surveys in the last decade
- UKIRT Infra-red Deep Sky Surveys (Lawrence+07), ESO VISTA Public Surveys e.g. VHS (McMahon, MB+13), VIKING (Edge+13), WISE All-Sky Survey (Wright+10)
- Cover wide areas, probe to high-redshifts and are also sensitive to obscured populations
- Exploited to discover large numbers of "red quasars" consistent with significant levels of dust extinction (e.g. MB+12,15, Glikman+12, Assef+15, Lacy+15, Hamann+17, LaMassa+17, Temple+19)

HEAVILY REDDENED QUASARS (HRQ)

SURVEY DATA

PHOTOMETRIC SELECTION

SPECTRA

More than 60 HRQs now spectroscopically confirmed mostly at z^2 -3 using VLT-SINFONI and Gemini-GNIRS (MB+12,13,15, Temple, MB+19). Not in X-ray or UV surveys (high-L, high-z, obscured) – new population

THE OBSCURED FRACTION

MB+15

- Evolutionary differences between obscured and unobscured AGN?
- Obscured AGN can only be spectroscopically confirmed using deep optical and IR spectroscopy -> MSE

AGN OUTFLOWS

Coatman, Hewett, MB+19

Broad-line region (pc scale) and narrow-line region (kpc scale?) outflows are correlated in luminous quasars at z > 2

OUTFLOWS & OBSCURATION

- Current state-of-the-art is a few hundred quasars where emission lines such as [OIII] have been studied as a function of quasar properties at high-z
- When matching to samples of quasars with dust obscuration the number reduces to only a few tens – no difference in outflow properties as a function of obscuration
- [OIII] will be visible out to z~2-2.5 with MSE- peak epoch of galaxy formation and black hole accretion
- MSE will allow us to investigate differences in outflow properties as a function of luminosity, redshift and obscuration (controlling for host galaxy properties and environment)

Temple, MB+19, Coatman,+19

MSE2020 12

AGN HOST GALAXIES

Wethers, MB+18

MSE will make it possible to decompose AGN and host galaxy emission from high SNR spectra (e.g. stacks from RM sample). H-band -> stellar mass measurements

THE EARLIEST SMBHS IN THE EPOCH OF REIONISATION

Reed, MB+19

Hundreds of quasars now known at redshift > 6 (e.g. Jiang+16, Reed+17, Banados+16, Wang+19, Yang+19).

However still relatively few at z > 7 (Mortlock+11, Banados+18, Yang+20) and also at low luminosities (Matsuoka+18). **MSE** will help build a large sample of z > 7.5 quasars as well as lower-L AGN at $z \sim 6$.

NIR spectroscopy with MSE gives access to MgII emission line out to z~5 for BH mass estimates. High ionization lines e.g. CIV often biased by outflows (Coatman+16, 17)

Reed, MB+19

AGN OUTFLOWS AT THE EPOCH OF REIONISATION

Is there evidence that high-z quasars have stronger signatures of broad-line region outflows compared to their low-z counterparts? Is feedback more efficient in the high-z Universe? Evidence is currently mixed and limited by sample size

Much larger samples needed to confirm/refute any trends -> MSE

MSE2020 15

MSE AGN SCIENCE THEMES

Single Epoch

BH seeds

AGN triggering and mergers

Host galaxies

Obscured AGN

The earliest SMBHs

AGN feedback

Clustering

Demographics

Lensed quasars

Reionisation

Intervening absorbers

Time Domain

Reverberation mapping

Nuclear outflows

AGN variability

Close SMBH binaries