MOST

Building galaxies with 4MOST/ WAVES and MSE

Jon Loveday University of Sussex

www.4MOST.eu

- I will briefly review status of existing, ongoing, and planned spectroscopic surveys of representative samples of galaxies:
 - SDSS
 - GAMA
 - 4MOST WAVES
- Look ahead to extragalactic surveys with MSE (based on Chapter 7 of MSE Detailed Science Case, 2019)

Questions

- How do galaxies and structure evolve over time?
- Low-mass ends of the halo and stellar mass functions?
- How are galaxies affected by host halo properties and larger-scale environment?
- What is typical merger history?
- How are galaxies affected by dark matter and dark energy?
- What quenching mechanisms dominate in different environments?

SDSS

- Perhaps first major survey to systematically address such questions was the Sloan Digital Sky Survey (SDSS)
- Main galaxy sample (MGS)
 - ~1 million galaxy spectra to r < 17.77 $(\bar{z} \approx 0.1)$ plus 5-colour imaging over 8423 deg²
- Huge volume, high redshift-success rate
- Incomplete in high-density regions (fibre collisions)
- 18,752 pubs to date with SDSS in abstract

Galaxy and Mass Assembly (GAMA)

- AAOmega spectra for 183,000 SDSS galaxies with r < 19.8 ($\bar{z} \approx 0.23$) over three equatorial fields, each 12 × 5 deg
- FUV-FIR imaging
- On average 40 visits to each area of sky: 98.5% complete even in high-density regions
- Ideal for group-finding and environment studies
- ~1/5 volume of SDSS MGS
- 190 pubs to date using GAMA data
- http://www.gama-survey.org/

Driver+2009 (mock GAMA data)

4MOST

- Spectroscopic facility for 4m VISTA telescope @ Paranal
- 2.5 deg FoV
- Covers southern sky with 5000 pointings (~2 years)
- 2400 fibres (AESOP positioner)
- 1600 low-res spectra (*R* ~ 5000)
- 800 high-res spectra (*R* ~ 20000)
- 5-year public surveys run in parallel, commencing late 2022

4MOST Science Themes

High-energy sky eROSITA

Galaxy evolution vst/vista

Galactic Archeology Gaia and PLATO

4MOST Consortium surveys

- 70% of time for 5 years; all described in March 2019 ESO Messenger
 - 1. Low Res MW Halo
 - 2. High Res MW Halo
 - 3. Low Res MW Disk + Bulge
 - 4. 4MIDABLE High Res MW Disk + Bulge
 - 5. eRosita Galaxy Clusters
 - 6. eRosita AGN + QSO Survey
 - 7. Wide Area Vista Extragalactic Survey (WAVES)
 - 8. Cosmology
 - **9.** 1001MC
 - 10. Time-Domain Extragalactic Survey (TIDES)

4MOST WAVES https://wavesurvey.org/

WALLES WIDE AREA VISTA EXTRAGALACTIC SURVEY

0.0hrs

WAVES Wide

- VST-KiDS target selection: $m_z < 21.1 \text{ mag}$, $z_{\text{phot}} < 0.2 \rightarrow 50,000 \text{ haloes to } \sim 10^{11} \text{ M}_{\odot}$
 - Halo and stellar mass functions
 - Void distribution function
 - Quantify SFR, masses, and structural properties across wide range of halo masses

WAVES Deep

- VST-KiDS target selection: $m_z < 21.25$ mag, $z_{phot} < 0.8 \rightarrow 20,000$ haloes to ~10¹⁴ M_{\odot}
 - Evolution of high-mass end of HMF
 - Major and minor galaxy merger rates
 - Gas, stellar and dust mass growth of galaxies

WAVES Wide + Deep Evolution of Structure

• Euclid+WAVES will measure bulge and disk growth since $z \sim 1$

MSE extragalactic surveys

Maunakea Spectroscopic Explorer

MSE low-z surveys

- Complete ($M_* \approx 10^7 \, M_{\odot}$) census of galaxies in local universe
- Requires input catalogue complete in LSB galaxies (Euclid, LSST)
- Photo-z selection: z < 0.2
- S1-W: expect > 200 clusters with $M_h > 5 \times 10^{14} M_{\odot}$ in ~ 0.18 Gpc³
- S1-D: extreme dwarf galaxies ($M_* \ge 10^6 \,\mathrm{M}_\odot$)

Survey	Area	Depth	Depth	Sample size
	(sq. deg)	(Selection band)	(equivalent i)	
S1-W	3200	i < 23	<i>i</i> < 23	6M
S1-D	100	i < 24.5	i < 24.5	800k

MSE Science Case 2019

MSE low-z surveys

Building galaxies with 4MOST/WAVES and MSE | Jon Loveday

2.0

2.5

2.5

3.0

0.16

0.16

80

80

MSE Science Case 2019

		5				
Area (sq.deg)	Z_{lo}	Zhi	Vol / Gpc^3	Selection	N (10^3)	Density $(10^3/\text{sq.deg})$
20	1.5	2.0	0.04	<i>i</i> < 25.3	220	11.0

i < 25.3

i < 25.3

360

200

4.5

2.6

• Thr	ee sub-surveys	proposed in MSE Science Case
-------	----------------	------------------------------

	Fuil range of environments
•	Large enough samples to subdivide on mass, colour,
	environment

- Eull range of environmente
- Highly complete, mag-limited samples spanning 'cosmic noon', 1.5 < z < 3.0

MSE high-z surveys

Maunakea Spectroscopic Explorer

MSE Science Case 2019

Summary

- Current surveys constrain $M_* \gtrsim 10^8 \,\mathrm{M}_\odot$ galaxies at $z \lesssim 0.1$
- 4MOST WAVES will push to lower mass (wide) and higher redshift (deep)
- MSE will enable SDSS-like science at z ~ 2
- Complete census of low mass galaxies will require highly-complete imaging at very low surface brightnesses
- A challenge even for LSST and Euclid

Jackson+2020 arXiv:2007.06591