

Science Requirements and Technical Specifications at Conceptual Design

Site characteristics							
Observatory latitude			19.9 d	egrees			
Accessible Sky		30,000	square degrees (airma	ass < 1.55 i.e., δ > -30 d	egrees)		
Median image quality			0.37 arcsec (free atmos	sphere, zenith, 500 nm)		
Av. length of night adjusted for weather	8 hours						
Observing efficiency (on-sky, on-target)			80	0%			
Expected on-target observing hours			2336 hou	urs / year			
Expected on-target fiber-hours	10,	119,552 fib	er-hours / year (total):	7,589,664 (LR & MR) /	2,529,888	(HR)	
,							
Telescope architecture							
Structure, focus	Altitude-azimuth, Prime						
M1 aperture / Science field of view			80.8 m ² / 1.5 s	square degrees			
Spectrograph system	6 x LMR spectrographs (4 chan	6 x LMR spectrographs (4 channels / spectrograph), all identical, each channel seperately switchable to provide LR and MR modes					
		•		·	•		
Fiber positioning system							
Multiplexing	4,332 (total): 3,249 (LR & MR) / 1,083 (HR)						
Fiber size	1 arcsec (LR & MR) / 0.75 arcsec (HR)						
Positioner patrol radius	90.3 arcsecs						
Positioner accuracy	0.06 arcsec rms						
Positioner closest approach	Two fibers can approach with 7 arcsecs of each other (three fibers can be placed within 9.9 arcsec diameter circle)						
Repositioning time	< 120 seconds						
Typical allocation efficiency	> 80 % (assuming source density approximately matched to fiber density)						
	•			·			
	Low	resolution	(LR) spectroscopy				
Wavelength range	360 ≦ λ ≦ 560 nm	540	≦λ≦ 740 nm	715 ≦ λ ≦ 985	nm	960 ≦ λ ≦ 1320 nm	
Spectral resolution (center of band)	2,550	3,650		3,600		3,600	
Sensitivity requirement	m = 24.0		0.4.0	24.0		24.0	
(pt. source, 1hr, zenith, median seeing,	SNR/res. elem. = 2, λ > 400 nm	CND /	m = 24.0	m = 24.0		m = 24.0	
monochromatic magnitude)	SNR/res. elem. = 1, λ ≦ 400 nm	SNR/resolution element = 7		SNR/resolution element = 2		SNR/resolution element = 2	
Moderate resolution (MR) spectroscopy							
Wavelength range	391 ≦ λ ≦ 510 nm	576 ≦ λ ≦ 700 nm		737 ≦ λ ≦ 900 nm		1457 ≦ λ ≦ 1780 nm	
Spectral resolution (center of band)	4,400	6,200		6,100		6,000	
Sensitivity requirement	m = 23.5		m = 23.5	m = 23.5		m = 24.0	
(pt. source, 1hr, zenith, median seeing,	SNR/res. elem. = 2, λ > 400 nm	SNR/ros	solution element = 2	SNR/resolution element = 2		SNR/resolution element = 2	
monochromatic magnitude)	SNR/res. elem. = 1, $\lambda \le 400 \text{ nm}$	Sivilyics	olution clement – 2	Sivily resolution element - 2		Sivily resolution element – 2	
		resolution	(HR) spectroscopy				
Wavelength range	360 ≦ λ ≦ 440 nm		420 ≦ λ ≦ 520 nm		500 ≦ λ ≦ 900 nm		
Wavelength band	λ/30		λ/30		λ/15		
Spectral resolution (center of band)	40,000		40,000		20,000		
Sensitivity requirement	m = 20.0		m = 20.0		m = 20.0		
(pt. source, 1hr, zenith, median seeing,	SNR/resolution element = 10, λ > 400 nm		SNR/resolution element = 10		SNR/resolution element = 10		
monochromatic magnitude)	SNR/resolution element = 5, λ ≤ 400 nm						
Science calibration (Control of the Control of the							
Sky subtraction accuracy	0.5% requirement (0.1% goal)						
Velocity precision	100 m/s (HR, SNR/resolution element = 30)						
Relative spectrophotometric accuracy 3% (LR, SNR/resolution element = 30)							

Telescope Optical Architecture:	Description	Comment		
Optical Design Characteristics	Wide-field prime-focus segmented-mirror telescope	Requires wide field corrector (WFC) and atmospheric dispersion corrector (ADC)		
- M1 effective collecting diameter	10 m	Accounted for telescope central obscuration		
- Field of view, optical	Circular FoV with diameter of 1.52 degrees	584 mm in size, average plate scale of 106.7 um/arcsec		
- Field of view, science	Hexagonal FoV with 1.5 square degrees area	Size of inscribing hexagon within the optical FoV		
- Final focal ratio at prime focus	f/1.926	Distance between M1 vertex to PF vertex is 19.1 m		
- Focal surface radius of curvature	11.33 m	Convex toward M1		
Primary Mirror Configuration	60 hexagonal segments	With 10 unique segment types and no central segment		
- M1 aperture diameter	11.25 m	Diameter of circumscribing circle		
- M1 focal length	18.845 m			
- M1 conic constant	-1.11			
- Segment size	1.44 m, measured from corner-to-corner	With 2 mm gap and 0.5 mm edge bevel		
Wide Field Corrector Configuration	Five lens design with integrated atmospheric dispersion correction	With one aspheric surface per lens element		
- WFC lens diameters	1300 mm (L1), 900 mm (L2), 800 mm (L3), 784 mm (L4), 690 mm (L5)	Clear aperture		
- WFC lens materials	Fused silica: L1, L2&L4 Ohara PBM2Y: L3&L5	·		
- ADC design		Image motion due to differential refraction also reduced by half across the field		
Albe design	Tremospheric dispersion correction provided by lateral similing 22 lens	image motion due to directendal remotion diso reduced by hair durous the held		
Observatory Building and Enclosure Architecture:	Description	Comment		
Overall height	42.3 m	Observatory building and enclosure		
	28.8 m			
Observatory building exterior diameter	20.0 111	Diameter of concrete foundation at ground level		
Enclosure style	Calotte with integrated ventilation modules on rotating base	Contain independently rotating base and cap, and fixed shutter plug attached to		
·		rotating base		
Enclosure spherical diameter	36.8 m	Exterior dimension		
Enclosure aperture opening	12.5 m	Oversized to allow dome tracking by intermittent motion		
Height of spherical center of enclosure	24.0 m	Height from ground level		
Telescope Mount Architecture:	Description	Comment		
Mount configuration	Altitude-azimuth mount	Independent azimuth and elevation structures		
Mount structure overall length	24.7 m			
Range of motion, observing	Azimuth: +/-270°; zenith: 1° to 60°			
Range of motion, servicing	Azimuth: +/-270°; zenith: 0° to 90°	Detetor develope focal surface to maintain towards to file a transfer of		
Instrument rotator range, total	+/-270°	Rotator derotates focal surface to maintain targets to fiber inputs alignment		
	,	during observation as part of telescope tracking and guiding		
Active optics correction				
- M1 control system, segment figuring	Moment actuators on segment support whiffletree provide warping	Phasing and alignment camera provides feedback		
Wil control system, segment rigaring	adjustment to maintain segment figure	Thusing and diignificht carriera provides recasaek		
NAA	180 actuators, three per segment, provide piston and tip/tilt	300 edge sensors provide M1 segment global shape real-time feedback during		
- M1 control system, global shape	corrections to maintain M1 global shape	observation; initial phasing provided by the phasing and alignment camera		
- Prime focus hexapod system range of motion	+/-10 mm defocus correction and +/- 10 mm decenter correction	Hexapod moves WFC to maintain optical alignment w.r.t. M1 during observation		
Motion Characteristics	,			
		Between any two points within the observing range of motion and including		
Maximum reconfiguration time	2 minutes	unwrapping of cable wraps		
Delinting accuracy	2.0 avecas DMC			
Pointing accuracy	2.0 arcsec RMS	Based on pointing model correction		
Tracking accuracy	+/- 0.25 arcsec RMS over 15 minutes	Based on pointing model correction		
Guiding accuracy	+/-0.055 arcsec RMS	Include acquisition and guide cameras real-time feedback		
Positioner System Architecture:	Description	Comment		
Sphinx fiber positioners with metrology camera		Metrology camera provides positional feedback during configuration where the		
· · · ·	circular area by pivoting around its base	fibers are back-lit from the spectrograph for camera viewing.		
Number of Fiber Positioners	4332 total	Two sets of positioners are deployed to select targets for low/moderate		
- LMR fibers	3249	resolution (LMR) spectrographs and high resolution (HR) spectrographs. Both		
- HR fibers	1083	sets provide full-field coverage simultaneously.		
System configuration time	75 sec combined in three stages	Coarse motion, fine motion and final measurement		
System positional error	6.3 um RMS/0.042 arcsec RMS			
Positioner pitch	7.77 mm	Center separation between two positioners		
Radius of patrol area	9.64 mm/90.35 arcsec	1.24 x pitch		
Tilt-induced defocus at max. patrol area	93 um/0.87 arcsec	Based on 250 mm spine length		
		Sasea on 250 mm spine rengar		
% of field coverage by 1 or more fibers	99.99% (LMR)/100.00% (HR)			
% of field coverage by 2 or more fibers	99.83% (LMR)/58.06% (HR)			
% of field coverage by 3 or more fibers	97.07% (LMR)/4.47% (HR)			
Min. separation between centers of two fibers	0.75 mm/7.03 arcsec	Closest approach between two fibres		
Min. circle between three fibers	1.06 mm/9.93 arcsec	Diameter of circumscribing circle between three fibers		
Robustness against positioner collision	No damage	Collision avoidance control software minimizes occurrences		
Fiber Transmission System Architecture:	Description	Comment		
Fiber material	High numerical aperture (NA=0.26-0.28) Polymicro FPB fiber with	Target light can be injected directly at fiber input without reformatting optics;		
inder material	pure silica core	reformatting optics is expected at spectrograph slit block		
Fiber length	50 m (HR fiber), 35 m (LMR fiber)	Extra length incorporated for telescope mount motion		
Fiber diameter	0.8 arcsec (HR fiber), 1.0" (LMR fiber)	Fiber diameter changed to 0.75 arcsec in the HR spectrograph design		
Fiber Cable Configuration	, , , , , , , , , , , , , , , , , , , ,	- ,		
- Number of connectors	0	Fusion splicing requires to integrate fiber with positioner		
- Number of cables	57	Cables are identical		
- Number of cables - Number of tubes per cable	4	Three tubes for LMR fibers and one tube for HR fibers		
- Number of tubes per cable - Number of fibers per tube	19	THE CAUSES FOR EARTH HIDERS AND ONE CAUSE FOR THE HIDERS		
		Each cable contains two loop house		
- Provision for broken fibers	Loop boxes provide access to spare fibers for splicing	Each cable contains two loop boxes		
	2			
Optical Coating Choices	Description	Comment		
M1 segment	Blue-enhanced protected silver coating from ZeCoat	20% more reflective in the "blue" than the Gemini protected silver coating		
WFC optics	Anti-reflection (AR) coating with MgF ₂ and Sol-Gel overcoat	Sol-Gel applied by spin-coat process		
Spectrograph slit block	Dielectric AR coating and index matching coupling gel			
•				

LMR Spectrograph Architecture	Description	Comment			
Multiplexing configuration	Six units for 542 spectra each				
Location	Telescope instrument platforms	Fiber fed, gravity invariant, exposed to observing environment			
Spectrograph operating temperature	-80° C	Cooled to reduced thermal background for H-band			
Spectral channels	Blue, Green, Red and NIR	Coverage provided in four spectral channels, three optical and one NIR			
Low Resolution Mode	Spectral Resolution	<u>Spectral Coverage</u>			
- Visible-band (blue) channel	R min = 2022, R average = 2584	Wavelength range: 360 - 560 nm			
- Visible-band (green) channel	R min = 3086, R average = 3657	Wavelength range: 540 - 740 nm			
- Visible-band (red) channel	R min = 3030, R average = 3602	Wavelength range: 715- 985 nm			
- YJ-band channel	R min = 3048, R average = 3619	Wavelength range: 960 - 1320 nm			
Moderate Resolution Mode	Spectral Resolution	Spectral Coverage			
- Visible-band (blue) channel	R min = 3788, R average = 5524	Wavelength range: 391 - 510 nm			
- Visible-band (green) channel	R min = 5647, R average = 6255	Wavelength range: 576 - 700 nm			
- Visible-band (red) channel	R min = 5459, R average = 6063	Wavelength range: 737- 900 nm			
- H-band channel	R min = 5437, R average = 6039	Wavelength range: 1457 - 1780 nm			
Four-Arm Optical Design					
- Collimator	Off-axis f/2.083 Schmidt collimator, beam aperture 175 mm				
- Dispersers	Resolution change by switching between VPH grating (LR) and VPH grating + prism (MR)	Max. line density 2275 I/mm, and size of 200 mm			
- Cameras	Five element transmissive camera with strong aspheric surfaces	f/1.2 camera, max. clear aperture 216 mm			
Detectors	Visible channels: E2V CCD 231 series, 4K x 4K, 15 um pixel, NIR	AR coating optimized for each optical spectral channel			
- Detectors	channel: Teledyne Hawaii 4RG15	An coating optimized for each optical spectral channel			
HR Spectrograph Architecture	Description	Comment			
Multiplexing configuration	Two units for 542 spectra each				
Location	Observatory building Coude room	Fiber fed, gravity invariant, protected from observing environment			
Spectral channels	Blue, Green and Red	Three separate spectral windows with narrower working windows			
<u>High Resolution Mode</u>	<u>Spectral Resolution</u>	<u>Spectral Coverage</u>			
- Blue channel	R=40K	Wavelength range: 360 - 440 nm			
- Green channel	R=40K	Wavelength range: 420 - 520 nm			
- Red channel	R=20K	Wavelength range: 500 - 900 nm			
- Working window width	Blue: λc/30@ λc=408.55 nm, Green: λc/30@λc=481 nm, Red:	λc is the central wavelength, working windows are reconfigurable by replacing			
- Working window width	λc/15@λc=650.5 nm	dispersers			
<u>Three-Arm Optical Design</u>					
- Collimator	Off-axis f/2.05 Houghton collimator, beam aperture 300 mm				
- Dispersers	Grism (grating + prisms)	Max. line density 5800 I/mm, and length of 650 mm			
- Cameras	Five element transmissive camera with three aspheric surfaces	Max. clear aperture 500 mm, focal length 474 mm			
- Detectors	E2V CCD 231-C6, 6K x 6K, 15 um pixel	AR coating optimized for each spectral channel			