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with a small offset to allow for atmospheric dispersion correction action. This happens once at the beginning of an 
observation. 

As a stand-alone system, PFHS is required to attain and maintain its position to within 0.15 mm laterally and 100 
microradians in tip/tilt over the course of any given observation with its own control system.  It is not necessary to be 
more precise than this because the InRo and guide cameras’ precise closed loop correction is removes lateral error. 
Therefore PFHS does not contribute to IE in these four degrees of freedom (lateral and tip/tilt). However neither the 
telescope pointing nor the InRo are able to correct in the focus direction, so the PFHS is required to position its payload 
to within +/-0.05 mm and maintain that position over an observation by its own control system.  

Errors in the fifth degree of freedom (focus) is not expected to be corrected by PFHS, as a baseline operation.  

During observations, InRo will have a 3.5” angular (rotational) accuracy which corresponds to 0.05” on-sky.  The 
angular rate of motion varies as a function of azimuth and elevation of the telescope pointing. Near zenith, there is a 1° 
diameter “keyhole” in which the rotator is not expected to meet this requirement. As well, the bearing will have an 
uncorrectable tilt, estimated as 50 urad, corresponding to a maximum defocus at the edges of the field of 30 um, during 
an exposure. These have been accounted for in all pointing, tracking and guiding error budgets and are acceptable error 
terms when considering IE. Misalignment of the axis of rotation of the positioners and guide cameras with respect to the 
InRo rotation axis is not expected to be an issue as long as the update rate of the InRo is fast enough to keep up with the 
update rate in the guide loop. As well, the guide cameras are in closed loop with the telescope mount control system and 
InRo will have inherent errors but are not expected to have significant impact on the IE. 

During the CoDP phase, InRo positioning requirements were assumed to be limited by bearing tilt and rotational 
positioning accuracy of the system. It is estimated that there is bearing tilt that will cause about 50 um defocus at the 
edge of the field over an observation, which will be uncorrectable by the PFHS.  

During configuration for an observation, the PosS system acquires its targets, in closed loop with its metrology system. 
The lateral errors for this are estimated at +/-6 um. While the PosS is in position, the tilted spine will cause defocus 
errors, depending on how far from vertical the spine has tilted. At its maximum range of motion, the tilt will cause 
significant defocus errors of +/-80 um. Since the amount of defocus will vary from positioner to positioner, PFHS will 
position the system to correspond to the mean of the spine tilts. As well, the tilt distribution per field has been modeled 
[9] for which the defocus is much smaller for the median tilt, so 80 um (max) is a conservative estimate of the error. 
Regardless, the median distribution was used to estimate IE and the sensitivity requirements are met. There may also be 
uncorrectable errors (in the PosS) due to gravity sag of the system, temperature changes and so on. These are taken into 
account in the IE budget as well.  

4. INTERFACES 
The prime focus components of MSE must fit into a small central obscuration (pictured in Figure 5) at the top end of the 
telescope to minimize the obscured light. Currently, the subsystems are asked to design to fit within that cross-sectional 
area. The volume has been apportioned into allowable volumes for the subsystems generally and is a challenging 
constraint. This forms a basis for developing interfaces between the prime focus subsystems that are mechanical in 
nature. 
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In the future, interfaces will be developed by a “leading” subsystem (usually the one most impacted by the interface 
constraints) first and then design iteration between both subsystems will occur. The Project Office will be fully involved 
in all interface discussions and must approve them as well as any proposed amendments. 

5. TEA CONCEPTUAL DESIGNS 
In this section, we talk about the specific designs for TEA as they are not covered in separate literature elsewhere. 

5.1 Prime Focus Hexapod System (PFHS) 

The hexapod is directly supported by the telescope elevation structure’s top end. Its payload includes the WFC/ADC 
barrel assembly, InRo, PosS, FiTS, ACG and PAC. During the set-up for each observation, the Prime Focus Hexapod 
System (PFHS) provides a displacement in five degrees of freedom (focus, decenter and tip/tilt), to align the WFC barrel 
to M1 and ensure PosS and the guide cameras are positioned at the focal surface. Included in this motion is a small offset 
to allow for the atmospheric dispersion correction action (see WFC/ADC section).  

During CoDP, commercial vendors were approached. Symetrie, in France, has proposed a promising solution (Figure 6): 
a modification of the similar JORAN hexapod, which is similar in size, on the LMT/GTM telescope, Mexico) [10]. 

 
Figure 7. PFHS. 

During CoDP, commercial vendors were approached by DT-INSU. Symetrie, in France, has proposed a modification of 
the similar JORAN hexapod, which is similar in size, on the LMT/GTM telescope . Like other hexapods, this includes 
six actuators arranged as in the example shown in Figure 6, with a supporting ring at both the interface to the telescope 
top end and the interface to the payload. In the Joran version of the hexapod, the actuators are brushless motors coupled 
with a jack. The jack is a ball bearing precision screw with a preloaded nut. Two sensors are included: an absolute sensor 
with an incremental linear scale and an additional incremental encoder in the motor. This arrangement does not require 
braking.  

Future work will include confirming that cross coupling (a parasitic movement that appears when the trajectory length is 
very near precision of actuation system) will not dominate the system, particularly ensuring the ±5 um of focus accuracy 
can be reliably attained. In particular, this could be a limiting factor for providing mid-observation adjustments of the 
system. As well, it will be confirmed that the Joran hexapod can maintain its positional stability during an observation 
unless the hexapod is kept under continuous drive loop control, which would likely cause unacceptable high heat 
dissipation, degrading image quality. However, this concern arose in the context of having a maximum observation of 1 
hour and PFHS may be stable (when shut off) for shorter observations. This will be revisited during PDP, including 
refining the duty cycle of PFHS based on observing fields and as well, the budget for injection efficiency will be 
reviewed to clarify the requirement. 
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Under all conditions, PFHS withstands earthquakes without allowing significant damage, especially to items that have a 
lengthy or expensive recovery, such as the fiber links. This will be confirmed in future work.   

PFHS is a well-established technology and will be a reliable and effective component of the overall telescope operation. 

5.2 Wide Field Corrector/Atmospheric Dispersion Corrector (WFC/ADC) 

The Wide Field Corrector/Atmospheric Dispersion Corrector provides wide field optical aberration correction and 
atmospheric dispersion correction for the 1.5° square field of view and delivers the corrected image at the telescope 
prime focus. Design of the WFC/ADC included the consideration for IQ but also other factors such as throughput and 
IE. 

The optical design of the WFC/ADC was developed based on many constraints, including Throughput and IQ as 
discussed. WFC/ADC consists of five lenses (Figure 7), of which three are fused silica and strongly powered (L1, L2, 
L4), and two are thin lenses of Ohara PBM2Y (L3, L5). AR coating is Solgel coatings which are damaged easily if 
mishandled. The lenses range in diameter from 1340 mm to 800 mm. Opto-mechanics must be designed to allow for this 
coating, which involves “spin-coating” these large lenses. Significant vignetting begins to occur at 90% of the field 
radius. 

 
Figure 8. WFC/ADC optics. 

DT-INSU has designed an optical barrel to maintain alignment of the optics during science observations. The barrel also 
protects the optics from the environment. The tolerance analysis in the optical design implied design constraints to 
maintain the IQ on the optomechanical subsystem of the WFC/ADC. This includes overall tolerances on individual lens 
elements for decenter between ±0.1 mm to ±0.5 mm, for tip and tilt between ±100 microradians to ±7000 microradians 
and for defocus about ±0.5 mm in order to meet injection efficiency and image quality requirements. Lenses are 
mounted in independently adjustable cells to ensure optical alignment is possible at assembly and for handling the optics 
without damaging the coatings, and then the cells are mounted in a barrel structure.  The lens cells allow alignment 
adjustment in any translation (Tx, Ty, Tz) and for tilts (Rx, Ry). A baffle structure at the entrance to the WFC/ADC 
prevents stray light from reaching the focal surface, with the whole assembly staying within a maximum central 
obscuration at the top end. 
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be explored in future work as limiting the range of motion has the potential to degrade the observing efficiency of the 
system.  

InRo is be supplied by a commercial vendor. CoDP work by DT-INSU involved speaking to vendors and focused on 
critical components: the motor and the bearing, to ensure it would be able to meet requirements. DT-INSU approached 
several commercial vendors in Europe.  

A torque motor or gear driven motor (Figure 12) were considered during the CoDP as having the most potential for the 
size and payload. The torque motor has integrated actuator and encoder and offers high precision, high torque, with no 
mechanical contact. However, it may have and unacceptable level of heat dissipation near the field of view. This may be 
mitigated by designing a motor that minimizes dissipation but that may introduce mass and size issues that can affect 
performance. 

 
Figure 12. InRo actuator options. Torque motor (left) and Gear slew motor (right). 

The gear driven motor includes double roller bearing, motor and encoder and could have two counter-rotating motors to 
provide both motion and braking. This would likely be a less massive solution but is likely not to provide enough 
accuracy.   

The main constraint on the bearing is to ensure the bearing runout remains as low as possible and to ensure the rotation 
axis of the rotator is coaxial with the optical axis of the payload. The only appropriate technology identified is a roller 
bearing. There are 2 types of configuration that will work for InRo: axial-radial cylindrical roller bearings or crossed 
roller bearing (Figure 13). 

 
Figure 13. InRo bearing options. Axial-radial roller bearing (left) and cross-roller bearing (right). 

Considering these technologies, InRo will have a 3.5” angular (rotational) accuracy which corresponds to 0.05” on-sky.  
The angular rate of motion varies as a function of azimuth and elevation of the telescope pointing. Near zenith, there is a 
1° diameter “keyhole” in which the rotator is not expected to meet this requirement. As well, the bearing will have an 
uncorrectable tilt, estimated as 50 urad, corresponding to a maximum defocus at the edges of the field of 30 um, during 
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an exposure. These have been accounted for in all pointing, tracking and guiding error budgets and are acceptable error 
terms when considering injection efficiency.  

Similar to PFHS, InRo supports its payload (PosS and AGC), both during normal observing but also during daytime 
operations and maintenance, where it supports the payload while cantilevered. Under all conditions, InRo withstands 
earthquakes without allowing significant damage, especially to items that have a lengthy or expensive recovery, such as 
the fiber links. This will be confirmed in future work.   

Several projects are working with similar sized systems and commercial vendors will be able to design a rotator which 
meet the size and mass requirements without difficulty.  Acceptable mechanisms are readily available for InRo’s critical 
components. Future work will include making decisions on which motor and bearing configuration to choose and 
developing the design to include the SCW and other interface and support structures. InRo is expected to be a reliable 
and effective component of the overall telescope operation. 

  

6. CONCLUSION 
During the conceptual design phase, international partners created conceptual designs of prime focus subsystems based 
on some general system constraints. Risks and challenging constraints were identified. With the designs in hand, MSE 
compiled the contributors to the system budgets for Throughput, Injection Efficiency and Image Quality, which are 
ultimately the quantities that are used to assess whether MSE will meet science requirements. 

Given a technical approach that maximizes the use of existing, reliable technology, MSE will be a practical, robust and 
achievable robust system, to allow it to be a massively multiplexed and powerful survey instrument. 
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