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of future work for the Preliminary Design Phase (PDP) have been identified. During CoDP, MSE’s instrumentation suite 
was developed during CoDP by partners in Australia, Canada, France and China. This paper highlights their current state 
of development, as well as the expected challenges and risks that will be resolved going forward. 

2.  MSE OVERALL CONFIGURATION 
MSE is an altitude-azimuth prime focus telescope with corresponding elevation and azimuth structures to support the 
telescope optics and hardware to enable observations. The overall layout of the observatory is shown in Figure 1. 

 
Figure 1. MSE overall layout after Conceptual Design Phase. 

The elevation structure supports M1 (in a cell support structure) and WFC/ADC (at the top end of the telescope) in a 
stable configuration as the telescope moves through 0° to 60° Zenith motion. The azimuth structure rotates over ±270° 
and supports the elevation structure as well as instrument platforms on both sides of the structure. 

The telescope includes a 60-segment primary mirror (M1) with an 11.25-m entrance pupil (10-m effective diameter) and 
a five-element wide field corrector/atmospheric dispersion corrector (WFC/ADC). M1 has 18.81 m focal length and 
radius of curvature is 37.698 m. This optical configuration delivers f/1.9 at a convex focal surface (Figure 2) with a 
radius of curvature of 11.33 m and a 1.52 degrees2 field of view (584 mm diameter). 
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Figure 2. M1 and WFC/ADC (left, middle) and field of view at prime focus (right). 

PFHS provides top end subsystem positional correction in five degrees of freedom (focus, decenter and tip/tilt) to 
compensate for dimensional changes of the telescope structure due to environmental and gravity orientation effects. By 
making these moves, PFHS maintains the alignment of the WFC barrel to M1, ensures the fibers and the guide cameras 
are positioned at the focal surface and provides a small offset as part of the ADC control action to allow for atmospheric 
dispersion correction. WFC/ADC is a single barrel opto-mechanical assembly, mounted on a Prime Focus Hexapod 
(PFHS).  

For survey efficiency, the science field must be suitable for tiling so MSE has chosen to define the science field of view 
as a hexagon, taking up 1.5 degrees2 (Figure 2). The hexagon is packed with fibers to collect light from targets and 
transmit them to the spectrographs. The remaining edges of the field of view are reserved for three off-axis guide 
cameras. Science targets in the field of view rotate as the telescope follows the sky, so the instrumentation and the guide 
cameras ride on a large-bearing instrument rotator (InRo) mechanism. Details of many of the subsystems at the top end 
of the telescope are available in [2] and are therefore not included here.  

MSE’s instrumentation suite (Figure 3) includes several subsystems, each designed by a partner institution. 
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     Figure 3: MSE instrumentation.  

The Fiber Transmission System (FiTS) (provided by Herzberg Astronomy and Astrophysics, HAA in Canada, [3] 
includes more than 4,332 fibers that collect the light at the focal surface and deliver it to the spectrographs, several 
meters away. Along with providing the fiber bundles, FiTS subsystem also includes a fiber management system to 
accommodate field rotation during observations and routes and protects the fibers through all motions of the telescope in 
all environmental conditions. 

The Fiber Positioner System (PosS) (provided by Australian Astronomical Observatory, AAO, see [4]) is an array of 
identical actuators, which carries and positions each fiber to a unique lateral position on the focal surface. To configure 
for each observing field, the positioners operate in closed loop with a dedicated metrology system (mounted in the 
missing central segment of M1) to maximize the light from targets entering the fiber. 

The fibers transmit light to two banks of spectrographs, High Resolution (HR) and Low-Moderate Resolution (LMR), 
which collect the raw data of tens to hundreds of thousands of raw spectra every night.  

HR spectrographs (designed by Nanjing Institute of Astronomical Optics & Technology, NAIOT in China, [5]) are fed 
by more than 1,083 fibers on the 2nd floor of the telescope pier, with a fiber length < 50 m. Each spectrograph unit has 
spectral resolution of R = 40,000 (< 600nm) and R = 20,000 (for > 600 nm) and operates over the range of 360-900 nm, 
with spectral channels (or wavelength windows) defined as: Blue [360-440] nm, Green [420-520] nm and Red [500-900] 
nm. The working windows are chosen to be Blue λ/30 at 408.55 nm, Green λ/30 at 481 nm and Red λ/30 at 650.5 nm. 
The working windows can be changed at any time by changing the dispersers. 

LMR spectrographs (designed by Centre de Recherche Astrophysique de Lyon, CRAL in France, [6]) are fed by 3,249 
fibers on the instrument platforms on the telescope’s azimuth structure, with a fiber length of < 35 m. LMR are a bank of 
six identical spectrographs each with three optical (blue, red and green) and NIR/H-band and switchable between low 
(LR = 2500) and moderate (MR = 6000) resolutions. 

A system of calibration sources (SCal) is planned which includes a dome flat screen and light source on the enclosure 
and telescope structure, respectively, and light sources under the spiders for lamp flats and arcs. While a calibration plan 
has been developed [7], the specific requirements and implementation of the SCal system are a work in progress.  

A multi-object integral field unit (IFU) is planned [8] as a second generation instrument upgrade, after some years of 
survey operations. However, the design is modular in that PosS can be replaced by the IFU with minimal alteration. 

MSE is designed with reference to performance, operational and other constraints. Performance requirements are those 
that affect the performance of MSE, defined as sensitivity in the SRD [9]. Sensitivity is quantified by its signal to noise 
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ratio (SNR), made up of quantities Throughput, Noise, Injection Efficiency and Image Quality, all of which are 
discussed in detail in other literature [10], [11].  As well, MSE’s operational concept [12] introduces additional 
constraints on the instruments, especially those related to calibration. These are discussed as needed in the following 
sections of this paper. 

3. INSTRUMENTATION 
3.1 Positioner System (PosS) 

For a given image quality delivered to the focal surface, injection efficiency is dependent on the accuracy of the 
positioners (both laterally and in the focus direction) and tilt angles of the positioners (which affects defocus).  After 
parallel development of two positioner technologies (phi-theta and tilting-spine), MSE has selected “Sphinx” tilting-
spine robotic actuators (Figure 4) as the baseline design. It was determined through modeling of Injection Efficiency 
[13] that the technologies have very similar performance, despite added defocus errors caused by the tilting spines given 
other sources of positional errors are included.  

Selection was based on other factors.  One of the critical factors was the flexibility and multiplexing that is enabled by 
having simultaneously HR and LMR full field coverage which significantly improves the overall observing efficiency 
[14] of MSE. As well, there are concerns that phi-theta positioners require optical switches because they must carry one 
each of a HR and LMR fiber. This would have been a source of throughput losses and mechanical failure.  Other benefits 
of the Sphinx tilting spine system include low dissipated heat near the focal surface and proven long-term reliability 
compared to phi-theta technology.  

Importantly, the choice of tilting spine actuators is thought to induce minimal stress as fibers are moved to position, 
which minimize transmission losses and throughput variations due to bends in the fibers. This also creates changes in 
FRD and near-field and far-field effects, affecting wavelength resolution. This will be measured on a fiber test bench 
being developed for MSE by the University of Victoria, in Canada [15]. 

   
Figure 4. PosS and FiTS and the top end. PosS (left) and FiTS (right):  1) Positioning system (simplified), 2) fiber combiner, 
3) helical tubes, 4) loop boxes 

The Sphinx system includes 4,332 individual actuators, each closely integrated with a fiber from the FiTS system. The 
piezo actuator “spine” assemblies (Figure 5) include several components. Carbon fiber tubes house the FiTS fiber (with 
ferrule). The tubes are supported by a pivot ball, held in place by a magnetic “cup” which acts as the fulcrum of the 
spine.  A piezo actuator produces a stick-slip of the cup and ball interface, which translates into an angular displacement 
of the spine. The resulting small lateral movements of the fiber end the focal surface are accurate to within 6 um RMS 
when used in closed loop with the metrology system during configuration. When the spine is tilted about the pivot ball to 
its full patrol range, the defocus of the fiber tip versus the fiber tip at vertical is 80 um (max). Since the amount of 
defocus will vary from positioner to positioner, PFHS will position the system to correspond to the median of all of the 
spine tilts. However, in modeling of the IE, the tilt distribution per field has been modeled [18] for which the defocus is 
smaller than the median tilt so the IE is actually conservative in this regard but nonetheless meets science requirements. 
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Figure 5. Fiber positioner spine assembly. 

To aid assembly and maintenance, spine actuators are mounted in manageable modules (Figure 6), which are integrated 
on a stable reference structure (not shown), which is integrated/aligned as closely as possible to the theoretical curved 
focal surface created by the optical system.  

 
Figure 6. Fiber positioner modules. 

The pitch of the actuators is 7.7 mm, with each actuator capable of moving the tip of each spine within a field patrol 
radius of 1.24 times the pitch (9.63 mm). The patrol areas overlap, allowing 1,083 HR and 3,249 LMR fibers to maintain 
full field coverage, with 97% of field positions accessible by 3 or more LMR fibers and 58% of field positions accessible 
by 2 or more HR fibers. Fiber to fiber collisions are low risk as they will not cause damage to the fibers or actuators. A 
metrology system images the full array of positioner fibers and iteratively works in closed loop with the positioner 
system to achieve its accuracy during configuration.  

The Sphinx design is an evolution of the piezo-actuated technology, first designed and implemented in FMOS-Echidna 
(Subaru), and later refined and simplified through design studies and prototypes for various other systems. Sphinx 
represents a mature and low risk solution to the MSE’s positioner requirements. 
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3.2 Fiber Transmission System (FiTS) 

The design of FiTS is primarily driven by throughput (FRD and near- and far-field) requirements and the need to have 
stable and repeatable calibration over 24 hours (according to the current calibration procedure in the operations concept 
[12]), over the full range of motion. This includes throughput due to transmission losses (mostly based on fiber length 
and use of continuous fibers), Fresnel (input and output) losses and focal ratio degradation (FRD). As well, the entire 
subsystem must be robust to prevent fiber breakage over the range of motion of the telescope and allow for repair in the 
event fibers are damaged over their lifetime. 

To provide the highest possible throughput, fibers are provided in a continuous link, using no connectors, all of the way 
from the focal surface to the spectrograph inputs.  After exiting the PosS actuators, the FiTS system support the fibers 
with protective tubes before being wound in a helix in a Rotation Guide System to allow for the motion of InRo.  The 
fibers are encased in bundles and fed through the telescope through all of its altitude and azimuth rotations. The fibers 
are routed to both the instrument platforms and the 2nd floor spectrograph room (currently a Coudé room in CFHT, see 
[15]).  

High (0.26 – 0.28) numerical aperture fibers capable of accepting f/1.9 have been selected to avoid adding additional 
input optics at the fiber input and the resulting throughput losses. During CoDP, it was found that FRD in this type of 
fiber is relatively small. The fibers are expected to include an anti-reflection coating on the input and output ends, 
however the feasibility of applying the coatings is a subject of future work.  

Fibers are susceptible to FRD, which has been estimated and tested in CoDP for this particular type of high NA fibers. 
Future work includes testing based on the stability of FRD which will affect the calibration of the system. As mentioned 
previously, a test bench has been built for this purpose [16]. 

The HR fiber diameter is 0.80” and the LMR fiber diameter is 1.0” and are sized [17] to take advantage of delivered 
image quality at the focal surface, based on the natural seeing distribution on Maunakea, dome seeing and the optical 
design. The fiber size for HR is undergoing a trade to optimize the SNR overall versus practical constraints on the 
spectrograph.   

Throughput is also affected by the length of the fibers, particularly at the blue end of the wavelength spectrum. The 
current baseline of having the HR spectrographs in the inner pier (< 50 m fiber length) and the LMR spectrographs on 
instrument platforms (< 35 m fiber length) is the subject of a trade study for MSE as it has been determined that the HR 
spectrograph has the potential to benefit much more from the shorter fiber length in the blue wavelengths than the LMR 
spectrograph. This has the potential to improve the overall efficiency of MSE. 

At the spectrographs, fibers are terminated in slit input units that provide the interface from the fibers to the 
spectrograph. The interface to the spectrographs is required to have a spherical shape or “smile” due to the off-axis 
collimators in both spectrograph designs. The shape of the slit compensates for the optical distortion such that spectra are 
“flat” (or straight line) when delivered to the spectrograph detectors. It is expected that these will look something like the 
slit input unit from Hermes (Figure 7) but with the design features, such as V-grooves and strain-relief proposed by 
HAA (Figure 7). 

 
Figure 7. Left: Curved slit input unit from AAT-HERMES (shows magnification optics that will not be included in MSE). 
Right: Straight slit input unit proposed by HAA. 
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Noise based on optical background is closely linked to the instrument temperature and associated thermal emission of 
the whole spectrograph visible from the detector. Optical stability may be an issue, if thermal variations are too great or 
if mechanisms are not repeatable enough (particularly the grating change mechanism). Temperature changes will cause 
changes to the glass optical indices, grating line numbers and air space and overall lens positions and orientation. For 
calibration, the criteria is 0.045 of a resolution element which corresponds to 3.3 pixels of width at minimum. This 
corresponds to +/-1.1 μm which is estimated to require thermal control of +/-0.1°C. This could be mitigated by 
considering a simultaneous wavelength calibration on some of the fibers, however this is not currently in the plan. 

H-band imposes a very cold instrument. Reducing background will require active cooling of the instrument to -70°C. 
This is at the limit of what can be achieved practically and a full vacuum cryogenics instrument is not desirable. 

Future work will include consideration by the science team to reevaluate the H-band requirements and better define the 
calibration requirements. As well, the optical design will undergo some iteration to make it less risky and expensive 
overall, if possible and find an implementation of H-band that is not onerous. 

3.5 Science Calibration System (SCal) 

Calibration of the system is based on three main science-based requirements: velocity resolution accuracy, relative 
spectrophotometry and sky subtraction. This is discussed in more detail in a separate paper [7]. 

MSE plans to perform calibration exposures using both flats and arcs. SCal subsystem consists of those light sources 
needed to provide the flats and arcs.  

Lamp flats will be taken in the nighttime before and after every observation under the same system configuration. Lamp 
flats will be taken in a fixed reference configuration to connect the twilight flats to the lamp flats. Twilight flats will be 
taken for a greater level of uniformity in reference configuration to characterize the overall system throughput. Daytime 
dome arcs will be taken in the fixed reference configuration. Daytime lamp arcs in the reference frame will be taken to 
connect the dome arcs to the lamp arcs to characterize the overall system wavelength. Nighttime lamp arcs will be taken 
before and after for the same system configuration. 

The main driving constraints for SCal are in achieving sufficient sky subtraction at the faint limits MSE is designed to 
reach. This is highly dependent on several factors that are not related to the SCal system but it is clear that close attention 
to hardware design is needed in coordination with the calibration methodology.  

Detailed SCal hardware requirements based on the calibration plan have not been defined yet and therefore this system 
has not undergone CoDP. This is a high priority in the near future for MSE. 

3.6 Integral Field Unit (IFU) 

An IFU [8] is planned as a second generation capability for MSE. It is anticipated that at a minimum, the existing PosS 
system can be replaced with an IFU that will use the existing LMR spectrographs. A second possibility is that the IFU 
could co-exist at the top end of the telescope with the positioner systems, be deployable and switching could be 
implemented at the LMR end. This initial concept assumes that overall science requirements on the first light systems, 
such as wavelength ranges and spectral resolutions, will be the same or similar as those for the IFU.  However, the 
specific science cases for the IFU have not yet been defined and work must be done to determine the optimal 
configuration (for example, number of spectra per IFU versus number of IFUs). This will be developed by the science 
team as the project moves into PDP. In the meantime, the conceptual design of MSE has been developed to allow for this 
upgrade. 

4. MSE SYSTEM INTEGRATION CONSTRAINTS 
The subsystems of MSE are being designed and built by organizations distributed around the world, so interfaces 
between the subsystems, as well as detailed planning of integration at the observatory becomes a critical factor for the 
project to succeed in meeting its performance requirements, on time without delays and rework. The Project Office is 
responsible for integrating all of the systems once delivered to the telescope.  

Assembly and integration considerations are a major focus for the FiTS system. FiTS/PosS can certainly be built as an 
assembly but the complication of having unbroken fiber length will require some careful planning about how the system 
is assembled and integrated at widely geographically dispersed facilities, shipped to the observatory and then installed on 
the telescope. The current plan is to build a continuous fiber bundle, deliver the entire subsystem to the PosS assembly 
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facility as a unit, with bare fibers at the input end and then assemble them and add the slit input units for the 
spectrographs. The details of this interface are under development but certainly fibers will be mounted in a zirconium 
ferrule, the fiber end polished and AR coated and integrated with individual spines of PosS.  

Fibers can be easily broken and installing tens of meters of delicate fibers on the telescope, with a positioner system on 
one end and a set of slit input units on the other end will require careful planning. The process of fusion bonding in situ 
to repair broken or damaged fibers is being developed and the performance of fibers after such a process is being 
verified in current testing facilities. The sequence and responsibility of this activity is not determined yet and is a high 
priority for MSE. 

The AIV process is controlled so that alignment tolerances on mating components ensure that fibers are aligned with the 
focal surface. This includes all prime focus subsystems, such as InRo and WFC/ADC have closely controlled interfaces 
to avoid large tolerance stack-ups. The IE budget includes AIV tolerances and are achievable with careful planning and 
interface definition and control. 

HR and LMR will be built and independently verified at their fabrication facilities before being shipped directly to the 
observatory site. Integration of the spectrographs is a well understood process, with the exception of handling and access 
in the tight spaces expected at the telescope. For FiTS and HR/LMR, the input slit unit tolerances and design will be 
closely controlled and monitored so they don’t degrade performance in the system after integration. 

As well, the instrumentation package is constrained by the space and mass limits both at the top end and, for the 
spectrographs, at their locations within the observatory. This will be closely tracked through the project lifecycles. 

5. CONCLUSION 
MSE has a combination of capabilities not available in any facility in the world today. The instrumentation suite is 
purpose-built to enable these capabilities: massive multiplexing, sensitivity as demanded by the science cases and 
dedicated operations.  

MSE will observe over four thousand science targets simultaneously in two resolution modes using the 4,332 fibers with 
individual positioners. The spectrographs’ size and numbers allow the collection of raw data from targets at a rate of 
millions of spectra per month. 

Sensitivity is enabled by taking advantage of the excellent natural seeing on Maunakea and large aperture by making 
effective material and design choices in the fibers and spectrographs and by optimizing the injection efficiency of the 
positioner system. The Sphinx fiber positioners provide a robust and reliable solution for positioning accurately over the 
large field of view. Throughput is enabled by the system choices for material choices, minimizing surfaces and in 
minimizing the length of the fibers. Noise is managed and accounted for by careful design. Calibration will present a 
special challenge but is being carefully planned and will be developed in future work. 

Dedicated operations over the wide range of resolutions and wavelengths combined with the flexibility of the 
spectrographs modes will mean the collection of. The spectrographs cover multiple spectral resolution with great 
flexibility because there are many different wavelength arms and resolution mode combinations available. Both HR and 
LMR are available simultaneously for any observing field due to the instrument suite design. 

MSE’s technical approach is to maximize use of existing designs and minimize development of new or unproven 
technologies. Even so, there are engineering challenges currently, including integration of the PosS and FiTS systems 
efficiently at the telescope, optical fabrication challenges in the spectrographs, especially in cost-effective fabrication of 
dispersers and aspheres. The result is an incredibly powerful, efficient and reliable survey machine that will be in high 
demand in the years to come.  
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