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ABSTRACT  

The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new 
Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical 
telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. 
This paper outlines the software and control architecture envisioned for the new facility. The architecture will be 
designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven open-
source software. CFHT plans to minimize risk and development time by leveraging existing technology. 
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1. INTRODUCTION 
The Maunakea Spectroscopic Explorer project will transform the CFHT 3.6m optical telescope into a 10m class 
dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a 
resolving power range spanning 2,000 to 20,000. The project is currently in design phase, with full science operations 
nominally in 2025.  

As part of this process, a critical eye is focused on identifying what the software infrastructure will look like for this 
newly reimagined facility.  MSE will require large-scale changes to the physical infrastructure of the CFHT observatory.  
Along with these physical changes, new software must be developed to support the new telescope, dome enclosure, and 
multi-object spectrograph.  As part of these changes, the entire software infrastructure for MSE must be addressed.  The 
proposed approach for developing MSE software will be to reap maximum benefits from the stable production software 
systems of CFHT and the open source and telescope community. 
 
In order to provide a bit of perspective on software for MSE, a diagram illustrating the lifespan of software produced for 
CFHT is shown in figure 1.  This figure is included to illustrate that the software for MSE is also likely to evolve over its 
lifespan.  As a result, it will be important to design and develop software with flexibility and maintainability in mind. 
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Figure 1.  CFHT software subsystems lifespan 
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2. SOFTWARE DESIGN AND IMPLEMENTATION PHILOSOPHY 
Many of the software challenges for MSE are similar to those faced by most observatories.  In order to put the software 
for MSE in the proper context, it is useful to take a step back and understand the overall software design and 
implementation philosophy that will be used with MSE. 

2.1 Development Methodology 

For the most part the software designed and developed for MSE will follow the traditional waterfall development 
approach (requirements, conceptual design, preliminary design, final design, implementation, integration, and testing 
phases). Areas with high user involvement, such as graphical user interfaces (GUIs), will follow a more iterative design 
cycle such as the agile development methodology.  To the extent that is necessary, prototyping may be performed, 
however, this will not be used as a way to bypass the design process.  The waterfall and agile methodologies were 
successfully used on large-scale software projects at CFHT such as Queued Service Observing (QSO), remote observing, 
and the Status Server.  In each case, these projects were integrated with virtually no downtime and a very low 
maintenance overhead.  

2.2 Open Source 

Where possible, open source software will be used with MSE.  CFHT has traditionally taken advantage of open source 
software.  As a result, CFHT also places a GPL license on internally developed software so that the observatory can give 
back to the community.  It is the hope that any software that is developed for MSE, either by MSE staff or by partners, 
should be freely shared in a non-commercial way.  The anticipated lifetime of MSE will span several decades and it is 
important that source code be available to adapt to possible changes to the hardware or operating systems over time.  In 
addition, should issues arise the MSE staff will have the ability to fully address them instead of critical components of 
the software behaving like a “black box”. 

2.3 Reuse 

CFHT has an underlying common software infrastructure that can be reused for MSE.  By reusing existing software for 
MSE it will be possible to reduce risk and start with a base of robust software.  It could be possible to integrate proposed 
changes to the common software for MSE within CFHT prior to commissioning.  There is no substitute for testing in an 
operational environment.  Though this comes with its risks to the efficiency of the existing observatory, upgrades have 
already been a constant process through the life of CFHT and carry the benefit of bringing modern tools, functionality, 
and efficiency to older instruments.  This paper will highlight the primary areas for software reuse from CFHT. 

2.4 Let the Requirements Dictate Design 

Rather than identifying a specific programming language that all software solutions for MSE must conform to, the 
software will be designed and implemented based on what the requirements dictate would be the best solution.  Those 
languages and packages that are ideally suited for user interfaces and data reduction may not be the best solutions for 
implementing low-level device drivers and GUIs.  The software infrastructure at CFHT is currently composed of a mix 
of compiled and interpreted languages based on matching the best solution to each particular need. 

2.5 Simple Communications Protocol 

The software infrastructure for MSE will be composed of a distributed network of computers and embedded controllers 
running software.  To the extent possible, the software for MSE will be designed in such a way that the communication 
between subsystems is based on a simple TCP/IP socket protocol.  This allows for a looser coupling between software 
components and provides greater implementation flexibility for each individual component.  In many ways this is 
patterned after the success of extensible protocols, such as HTTP, which have contributed to the success of the open 
Web.  The same principles can help prevent observatory software from becoming constrained within tightly controlled 
language-specific or architecture-specific and difficult to debug or trace communication frameworks.  By simplifying the 
coupling dependencies between subsystems it should be possible to provide the flexibility to adapt to future changes 
beyond the 2025 commissioning date currently envisioned for MSE.  Figure 2 contains a simple example where the 
current telescope coordinates are requested from the Status Server at CFHT. 
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% nc statserv.cfht.hawaii.edu 909
> get /t/status/tcoords
< . /t/status/tcoords "F 21:27:31 19:59:00 appa zenith"

 
Figure 2.  Simple TCP/IP socket based protocol example 

 
2.6 Separate User Interface and Logic Layers 

Where possible, control logic will be separated into a layer that can be triggered in multiple ways.  The most obvious 
approach is to limit embedding control logic within GUIs outside of event handling and basic field validation.  This 
approach allows for control operations to be triggered via GUIs, scripts, sequencers, or business rule driven autonomous 
operations.  This also allows for future replacement of GUI layers or logic layers with limited disruption. 

2.7 Maintainability 

This is an area which often doesn’t receive the necessary thought early in the design process.  Large software 
development projects often have one group design and develop software before it is handed over to another group for 
support.  In this scenario a motivation of the software developer can be to learn the latest software technology by 
applying it on a project.  While it may be an interesting exercise to apply the latest bleeding edge frameworks and 
technologies to an observatory, it may be more useful to utilize software technologies that have been in use for at least 
several years and appear to be widely accepted with a long-term support projection.  It will be helpful to standardize on a 
handful of languages and technologies that will be used for MSE.  This allows for the development and reuse of existing 
libraries.  At CFHT the majority of software is written using C, Java, or Bash scripts with Python emerging as a 
language of choice among astronomers involved with data reduction.  At this point, these noted languages are both 
popular and mature.  The challenge with MSE is finding the correct balance between popularity, maturity, and support 
for the languages and platforms that are chosen as part of its future.   

 

3. OPERATIONAL OBSERVING ARCHITECTURE 
Figure 3 illustrates the operational observing architecture for MSE.  A Queued Service Observing (QSO) mode matching 
the current operating model for CFHT consists of three primary phases.  QSO will be the exclusive operating mode of 
MSE.  The first phase contains the software required for proposal submission, program definition, and observational 
scheduling.  The second phase contains the software required for the execution of observations and resulting real-time 
analysis of acquired data.  The final phase contains the software required for the archiving, in-house reduction, and 
distribution of science data to the principal investigators (PIs). 
 

 
Figure 3.  Operational observing architecture 

 
The “Observation” block within the diagram is highlighted, since it will be a focal point of the software within this 
paper.  The software within this block is responsible for configuring the observatory, telescope, and instrument and 
acquiring science data.  At this point, the phase 1 definition (science proposal, definition, and scheduling) as well as the 
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phase 3 definition (data management, reduction, and distribution) aren’t complete to the extent that the software to 
support these areas can be fully designed.  As a result, the remainder of this paper will focus primarily on the software to 
support science observations and overall data management. 
 

4. CONTROL SYSTEM INFRASTRUCTURE 
Figure 4 illustrates the general categories of software necessary to acquire on-sky science data and operate an 
observatory.  These categories are broken into hardware control, interfaces, and general infrastructure.  Each of the 
categories contains some components that are highlighted within a dark box.  These components contain software that 
could be reused from what currently exists at CFHT. 
 
At the hardware control level, MSE will have an entirely new telescope, mirror, instrument, and certain facility 
components such as the dome enclosure.  In general these new components will require newly designed software.  Some 
parts of the facility will remain intact from what CFHT already has.  Examples include parts of the power infrastructure, 
glycol cooling, dry air system, lighting, computer room humidifier, water system, security, and IT infrastructure. 
 
The second category contains various software interfaces.  These interfaces include human interfaces or GUIs, QSO 
interfaces for the queue system, autonomous interfaces, and engineering interfaces.  All four interface categories 
currently exist at CFHT and it is likely that some of the existing GUI, QSO, and autonomous interfaces will be adapted 
or modified in some way to be used for MSE. 
 
The final category covers the software infrastructure.  This infrastructure is composed of fairly generic elements that are 
used at all major observatories.  CFHT currently has a well-defined and robust infrastructure that can be extended for use 
with MSE. 
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Figure 4.  Control system infrastructure 
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5. SOFTWARE CONTROL ARCHITECTURE 
 
Figure 5 expands upon the control software within the block labeled “Observation” in figure 3.  This software is 
responsible for configuring the telescope, observatory, and instrument in order to acquire science data.  MSE will be 
operated remotely from Waimea without staff present at the observatory.  CFHT had a successful transition to remote 
observing at the beginning of 2011 and the plan is for MSE is to follow the same approach. 
  
There will be two primary control interfaces for MSE.  The first is the observing interface.  This interface consists of 
commands generated by the queue system during the normal observing process as well as commands generated from 
GUIs or an engineering-based command line interface.  These commands are sent via a TCP/IP socket to the observatory 
control sequencer.  The second interface is an autonomous rules engine.  This interface is necessary in order to support 
remote observing.  This software constantly monitors a set of conditions that could trigger the initiation of autonomous 
actions.  An example from CFHT, is the closing of the dome shutter and mirror covers when precipitation is detected.  
The autonomous rules engine is designed to initiate activities to protect the observatory, but it can also be used to initiate 
background actions as part of normal operations.  For example, at CFHT the autonomous rules engine is used to modify 
the dome vent configuration based on the current telescope pointing, wind direction, and wind speed in order to optimize 
dome flushing.  In the long-term future, perhaps MSE will be operated autonomously.  Since the input to the observatory 
control sequencer is a TCP/IP socket connection with commands for each initiated activity, it should be possible to 
modify the observing interfaces and autonomous rules engine components to support autonomous observing. 
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Figure 5.  Software control architecture 

 
The observatory control sequencer receives commands for all initiated telescope, instrument, and facility actions via a 
TCP/IP socket.  A single high-level command may result in multiple lower-level actions.  It is the responsibility of the 
observatory control sequencer to handle the high-level commands and initiate the lower-level actions by interacting with 
each of the low-level sequencers.  For example, a new on-sky target request would result in configuration commands 
being sent to the telescope control sequencer, telescope feedback sequencer, and instrument control sequencer.  
 
Below the observatory control sequencer are three primary areas of control software.  Each of these areas of control 
contain a sequencer that is focused on configuration and control of components within a logical subsystem.  The role of 
each sequencer is to synchronize action in a robust and efficient manner.  
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6. COMMON SYSTEM CONTROL ARCHITECTURE 
Within figure 5 it may be apparent that some software reuse can be realized between subsystems.  This leads to what is 
known as the common system control architecture.  An illustration of this architecture can be found in figure 6.  This 
architecture essentially expands on the control system architecture from figure 4.   
 
Starting at the center of the diagram, the core software is composed of a hardware and software stack of components that 
start from hardware at the bottom layer to high-level sequencing at the top layer.  Between the sequencer and hardware 
layers is a layer labeled “agents”.  A software agent is a component that handles communications and control for a 
hardware subsystem.  Between the software agent and hardware itself there could be a device driver.  An example of a 
software agent, which is used for all the instrument control systems at CFHT, is a detector control agent.  In this 
example, a Linux device driver is used to handle PCI fiber cards.  The detector control agent interacts with the detector 
controller on the other end of the fiber by sending requests and transferring pixel data, which is ultimately stored on the 
file system.  
 
 

..

Hardware

Software Software Control

Hardware Control

Core Control Components

Swapable Simulation & Testing Control Components

Sequencer

Sequencer(s)

Agent(s)

Hardware Device Driver(s)

Engineering Control

Simulated Hardware

Simulated Agent(s)

Simulation/Test Control

Hardware

Safety Control Core Components

Hardware Ctrl Panel

Local Control

Observing & Autonomous Control

Engineering Interface(s)

Engineering Interface(s)

Observing Interface(s) Autonomous Rules Engine

Test Scripts

Simulated Sequencer(s)

Hardware

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SO
FT

W
A

R
E

H
A

R
D

W
A

R
E

 
Figure 6. Common system control architecture 

 
At the bottom of the diagram below the dotted line is a hardware only layer.  Any low level safety interlocks and local 
hardware control are performed at this layer.  The hardware layer is classified by the use of PLC devices (such as Allen 
Bradley PLCs) or custom hardware.  Although actions, alerts, and warnings may be initiated by high-level software, 
philosophically the ultimate responsibility for both personnel and equipment safety is kept at the hardware level. 
 
On the left side of the figure are boxes indicating engineering interfaces.  For engineering and testing purposes it is 
possible to interact with both the sequencers and software agents through engineering interfaces.  At the most basic level 
this can be done via a command line interface.  Commands can be sent to both the sequencer and agents via a TCP/IP 
telnet style socket connection.   
 
On the right side of the figure are boxes indicating ways that various parts of the system can be tested or simulated.  
Each of the layers that make up the core components can be substituted with simulation sequencers, agents, or hardware.  
In addition, at the top layer the observing interfaces and autonomous rules engine can be replaced with test scripts as 
necessary.   
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The common system control architecture is designed to be flexible and adaptable.  The input at both the sequencer and 
agent levels is a simple command/response protocol over a TCP/IP telnet style interface.  As a result, the middleware 
communication layer doesn’t dictate the required programming language for each layer.  At CFHT, the sequencer and 
agent layers are currently implemented in C.  However, the flexibility exists to use a different language if the 
requirements dictate a better solution or if the future yields a better alternative.  Almost all languages nowadays support 
TCP/IP communications.  In addition, by supporting a simple TCP/IP interface it becomes simple to diagnose problems 
at the network level, if necessary. 
 

7. DATA MANAGEMENT 
Up until this point, this paper has focused on the software involved with hardware control.  This is obviously a big part 
of the software infrastructure required for MSE.  The other major part of software is everything involved with the 
capture, storage, and manipulation of data.  Figure 7 contains an overview of the data management infrastructure for 
MSE. 
 
 

 
Figure 7.  Data management breakdown 

 
The figure breaks down the data management infrastructure from the basis of data producers, data repositories, and data 
consumers.  It is possible for some systems to be both producers and consumers of data.  The repositories that are listed 
in the figure are repositories that currently exist at CFHT.  It is quite possible that these repositories can be extended for 
use with MSE.   

7.1 Real-Time Data 

The Status Server is an in-memory, real-time repository containing the bulk of all state and status information across the 
observatory. The Status Server provides capabilities that are similar to EPICS Channel Access.  Clients can publish, 
retrieve, and subscribe to data stored within the repository.  The ability for clients to subscribe to data stored in the 
repository and be notified on changes allow for the creation of useful client software such as notification, data logging, 
autonomous action initiation, and GUIs.  The Status Server was developed at CFHT many years ago and has become a 
core component within the data management infrastructure.  Information within the Status Server is stored as 
hierarchical name-value pairs and can be traversed in a similar fashion to a file system. 
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7.2 Operational Data 

Since the Status Server does not keep historical information, data values that are useful to archive are stored within an 
environmental database.  The primary producer of information for this database is a Status Server client. This client 
receives notifications when subscribed items in the Status Server change and updates the environmental database as 
necessary.  CFHT has been utilizing a customized database for this purpose in the past and is currently evaluating the 
feasibility of using a no-SQL database such as MongoDB for this purpose in the future.  If this evaluation proves 
successful, this will be the approach used for MSE.  Clients of the operational data repository include GUIs, plots, pre-
defined queries and customizable ad-hoc queries. 

7.3 Diagnostic Data 

As part of software maintenance and post failure analysis, diagnostic data is critical.  The question with diagnostic data 
isn’t really whether it should be logged.  Instead, the question is often how much to log, how to log it, and where to store 
this information.  There are both advantages and disadvantages to having diagnostic log data stored in a single 
repository.  On one hand it is convenient to cross-correlate information.  However, this can come at the expense of 
performance.  In addition, a consolidated repository can create additional network dependencies in case of failures.  With 
MSE the proposed approach is to use localized logging with possible downstream aggregation as necessary. 

7.4 Science Data 

Without a doubt, the most valuable data product at an observatory is the science data.  More work must happen on the 
science requirements and instrument definition side to identify what the exact science data products will be for MSE.  
These data products will include reduced science data, since a data reduction pipeline is part of the software 
requirements for MSE.  Access methods to the science data archive will be defined for the science community.  At this 
point in time, the location of the MSE science data archive hasn’t been finalized.   

7.5 Observing Data 

In order to support Queued Service Observing (QSO) a database will be used to store data associated with PI proposal 
and program definition as well as execution, analysis, reduction and distribution.  This database must contain the 
information associated with each of the stages defined in figure 3.  At CFHT, a standard relational database was 
developed to support the phase 1, phase 2, and phase 3 components involved with QSO.   

NEXT STEPS 

The next major step in the MSE project is a conceptual design review at the end of 2016.  As part of this process, the 
requirements with regards to the software are being finalized such that a proper conceptual design can be written.  In 
addition, CFHT is investigating what role existing available internal as well as external software could play within the 
design for MSE.  While it would be an interesting and fun exercise to develop all new software for MSE from scratch, 
realistically this likely won’t yield a final solution that is more robust and higher quality at a lower cost than evaluating 
existing solutions that could become candidates for modification and reuse. 
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